Approximation of Singularly Perturbed Parabolic Reaction-diffusion Equations with Nonsmooth Data
نویسنده
چکیده
In this paper we consider the Dirichlet problem on a rectangle for singularly perturbed parabolic equations of reaction-diffusion type. The reduced (for ε = 0) equation is an ordinary differential equation with respect to the time variable; the singular perturbation parameter ε may take arbitrary values from the half-interval (0,1]. Assume that sufficiently weak conditions are imposed upon the coefficients and the right-hand side of the equation, and also the boundary function. More precisely, the data satisfy the Hölder continuity condition with a small exponent α and α/2 with respect to the space and time variables. To solve the problem, we use the known ε-uniform numerical method (i.e., a standard finite difference operator on piecewiseuniform fitted meshes over the axes x1 and x2) which was developed previously for problems with sufficiently smooth and compatible data. It is shown that the numerical solution converges ε-uniformly at the rate of O(N−ν +N−ν 0 ), ν = m α; here the values of N and N0 define the number of nodes in the space (with respect to each variable) and time meshes. We discuss also the behavior of local accuracy of the scheme in the case where the data of the boundary-value problem are smoother on a part of the domain of definition. 2000 Mathematics Subject Classification: 65N06; 65N22; 35B25.
منابع مشابه
Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملPre-publicaciones Del Seminario Matematico 2008 an Almost Second Order Uniformly Convergent Method for Parabolic Singularly Perturbed Reaction- Diffusion Systems an Almost Second Order Uniformly Convergent Method for Parabolic Singularly Perturbed Reaction-diffusion Systems *
In this work we consider a parabolic system of two linear singularly perturbed equations of reaction-diffusion type coupled in the reaction terms. The small values of the diffusion parameters, in general, cause that the solution has boundary layers at the ends of the spatial domain. To obtain an efficient approximation of the solution we propose a numerical method combining the Crank-Nicolson m...
متن کاملNumerical approximation of solution derivatives of singularly perturbed parabolic problems of convection-diffusion type
Numerical approximations to the solution of a linear singularly perturbed parabolic problem are generated using a backward Euler method in time and an upwinded finite difference operator in space on a piecewise-uniform Shishkin mesh for a convectiondiffusion problem. A proof is given to show first order convergence of these numerical approximations in appropriately weighted C-norm. Numerical re...
متن کاملParameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems
In this paper, parameter-uniform numerical methods for a class of singularly perturbed parabolic partial differential equations with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The solution is decomposed into a sum of regular and singular components. A numerical algorithm based on an upwind fini...
متن کاملUniform Exponential Attractors for a Singularly Perturbed Damped Wave Equation
Our aim in this article is to construct exponential attractors for singularly perturbed damped wave equations that are continuous with respect to the perturbation parameter. The main difficulty comes from the fact that the phase spaces for the perturbed and unperturbed equations are not the same; indeed, the limit equation is a (parabolic) reaction-diffusion equation. Therefore, previous constr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001